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1. Asystem of three equations is defined by

kx +3y—- z=3
X-— y+ z=-k
-16x —ky —kz=k

where K is a positive constant.
Given that there is no unique solution to all three equations,

(@) show that k = 2

Using k =2

(b) determine whether the three equations are consistent, justifying your answer.

(c) Interpret the answer to part (b) geometrically.

(2)

(3)

(1)
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Question 1 continued
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2. Given that

|
w
O
5

|2122

arg(z,2,) =

where z, and z, are complex numbers,
(a) write z, in the form r(cos@ + isin®)

Give the exact value of r and give the value of ¢ in radians to 4 significant figures.

(b) Find z, giving your answer in the form a + ib where a and b are integers.

(2)

(6)
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Figure 1

Figure 1 shows a circle with radius r and centre at the origin.

The region R, shown shaded in Figure 1, is bounded by the x-axis and the part of the
circle for whichy > 0

The region R is rotated through 360° about the x-axis to create a sphere with volume V

Use integration to show that V = %nr3

(5)
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All units in this question are in metres.

A lawn is modelled as a plane that contains the points L (-2, -3, -1), M (6, -2, 0) and
N (2, 0, 0), relative to a fixed origin O.

(a) Determine a vector equation of the plane that models the lawn, giving your answer in
the formr=a+ b + uc

©)
1
(b) (i) Show that, according to the model, the lawn is perpendicular to the vector | 2
-10
(if) Hence determine a Cartesian equation of the plane that models the lawn.
(4)

There are two posts set in the lawn.

There is a washing line between the two posts.

The washing line is modelled as a straight line through points at the top of each post with
coordinates P (-10, 8, 2) and Q (6, 4, 3).

(c) Determine a vector equation of the line that models the washing line.

(2)

(d) State a limitation of one of the models.

1)
The point R(2, 5, 2.75) lies on the washing line.

(e) Determine, according to the model, the shortest distance from the point R to the lawn,
giving your answer to the nearest cm.

)
Given that the shortest distance from the point R to the lawn is actually 1.5m,

() use your answer to part (e) to evaluate the model, explaining your reasoning.

1)
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4+—(r+2)—»
Figure 2
A block has length (r + 2)cm, width (r + 1)cm and height rcm, as shown in Figure 2.

In a set of n such blocks, the first block has a height of 1cm, the second block has a
height of 2cm, the third block has a height of 3cm and so on.

a Se the Stanaard results T1or r, 7o an r 10 SNOwW tha e total volume, Vv, O
Use the standard Its f 3 2 and to show that the total vol V, of
r=1

r=1 r=1

all n blocks in the set is given by
V=%(n+1)(n+2)(n+3) n>1
Given that the total volume of all n blocks is

(n*+6n®-11710) cm?®

(b) determine how many blocks make up the set.

()

(2)

12

SRS
poceT 3¢

o5
SRKL

(‘1-
%

%
<
oV
See’e
R0

X
vl

590

SRS

5

9% 3 %98

G
o

SRS

poteaites

RUARRR

9% = X

%
%

KKK IKKLRKAKXKY

&

SRR

S
¢!

QKA

KRR ALK KR
6%

‘:”.’
K
K
8



s
1 s
¥

OO
PANE
ool

K

<A
S
BoSoriee

o = ale
SRS

L
0N
e
KEB

0
S
S
o
SIS
BeSs?-~Sos]
S
R
292

SHES
&
PN

02
XXX
XX
)
REERRLEIEKL

%5
poose

RSN
Sotetetetele
XK

(9305
&5
%5

XX
2R
KRR

4 “
Question 5 continued
\. J
13
00O O N 0 0 Turn over »
P6 2 6 8 5 A0 1 3 2 8

PMT



7

Question 5 continued

14

P 6 2 6 8 5 A 0 1 4 2 8

PMT!

HIKS
doseseseses
oesees

$95%.%%
K X
KL
(020~~~ 9:9
S0 ova %%
s, S

900
elotete?
poscss

RS20
RLKS

%

e’
Y&
)

%%
<

b0l @ X6

RER

-
b s 98
X
P

ORIQUAIIAAN
0.0.:22':‘ %%
%%

O
0000000000000’:‘0.
L
Y
%
&

950
9%
S5
o
558

<
i
05

<
%

SHRRHRS

a oo tetetetetete ettty
Pt te e lotetotetetetetet
¢!

RIS
RRELRS

o
S



s
1 s
¥

OO
PANE
ool

K

<A
S
BoSoriee

o = ale
SRS

L
0N
e
KEB

0
S
S
o
SIS
BeSs?-~Sos]
S
R
292

SHES
&
PN

02
XXX
XX
)
REERRLEIEKL

%5
poose

RSN
Sotetetetele
XK

(9305
&5
%5

XX
2R
KRR

7

Question 5 continued

(Total for Question 5 is 7 marks)

15

R AR T Turm over »
P 6 2 6 8 5 A 0 1 5 2 8

PMT



6. (i)

(i)

16

2 a
A =
(a—4 b)

where a and b are non-zero constants.
Given that the matrix A is self-inverse,

(@) determine the value of b and the possible values for a.

(5)
The matrix A represents a linear transformation M.

Using the smaller value of a from part (a),

(b) show that the invariant points of the linear transformation M form a line, stating
the equation of this line.

3)
(53]
-1 3p

The matrix P represents a linear transformation U.
The triangle T has vertices at the points with coordinates (1, 2), (3, 2) and (2, 5).
The area of the image of T under the linear transformation U is 15

where p is a positive constant.

(@) Determine the value of p.

(4)

The transformation V consists of a stretch scale factor 3 parallel to the x-axis with the
y-axis invariant followed by a stretch scale factor —2 parallel to the y-axis with the x-axis
invariant. The transformation V is represented by the matrix Q.

(b) Write down the matrix Q.
)

Given that U followed by V is the transformation W, which is represented by the matrix R,

(c) find the matrix R.
)
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fz)=z*+az®+bz?+cz+d

where a, b, ¢ and d are real constants.

The equation f(z) = 0 has complex roots z,, z,, z, and z,

When plotted on an Argand diagram, the points representing z,, z,, z, and z, form the
vertices of a square, with one vertex in each quadrant.

Given that z, = 2 + 3i, determine the values of a, b, ¢ and d.

(6)
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8. Prove by induction that, for n € Z*

is divisible by 7

f(n) = 2n+2 + 32n+1

(6)
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9. The cubic equation

XC+x2-4x+1=0
has roots a, f, and y.

Without solving the cubic equation,

(@) determine the value of 1 + i + 1

a By (3)
(b) find a cubic equation that has roots 1, % and 1, giving your answer in the form
o Y
x®+ ax? + bx + ¢ = 0, where a, b and c are integers to be determined.

3)
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10. Given that there are two distinct complex numbers z that satisfy

—3—5i|:2r N

determine the exact range of values for the real constant r.

(7)
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Question 10 continued

(Total for Question 10 is 7 marks)

TOTAL FOR CORE PURE MATHEMATICS IS 80 MARKS
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